On the chaotic behavior of a generalized logistic p-adic dynamical system

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ON THE CHAOTIC BEHAVIOR OF A GENERALIZED LOGISTIC p-ADIC DYNAMICAL SYSTEM

In the paper we describe basin of attraction p-adic dynamical system G(x) = (ax)(x+ 1). Moreover, we also describe the Siegel discs of the system, since the structure of the orbits of the system is related to the geometry of the p-adic Siegel discs. Mathematics Subject Classification: 37E99, 37B25, 54H20, 12J12.

متن کامل

LI-YORKE CHAOTIC GENERALIZED SHIFT DYNAMICAL SYSTEMS

‎In this text we prove that in generalized shift dynamical system $(X^Gamma,sigma_varphi)$‎ ‎for finite discrete $X$ with at least two elements‎, ‎infinite countable set $Gamma$ and‎ ‎arbitrary map $varphi:GammatoGamma$‎, ‎the following statements are equivalent‎: ‎ - the dynamical system $(X^Gamma,sigma_varphi)$ is‎ Li-Yorke chaotic;‎ - the dynamical system $(X^Gamma,sigma_varphi)$ has‎ an scr...

متن کامل

On Ergodic Behavior of P-adic Dynamical Systems *

Monomial mappings, x 7→ xn, are topologically transitive and ergodic with respect to Haar measure on the unit circle in the complex plane. In this paper we obtain an anologous result for monomial dynamical systems over p−adic numbers. The process is, however, not straightforward. The result will depend on the natural number n. Moreover, in the p−adic case we never have ergodicity on the unit ci...

متن کامل

ON CHAOS OF A CUBIC p-ADIC DYNAMICAL SYSTEM

In the paper we describe basin of attraction of the p-adic dynamical system f(x) = x + ax. Moreover, we also describe the Siegel discs of the system, since the structure of the orbits of the system is related to the geometry of the p-adic Siegel discs. Mathematics Subject Classification: 37E99, 37B25, 54H20, 12J12.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Differential Equations

سال: 2007

ISSN: 0022-0396

DOI: 10.1016/j.jde.2007.01.014